skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tang, Bin-Bin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract In Earth’s low atmosphere, hurricanes are destructive due to their great size, strong spiral winds with shears, and intense rain/precipitation. However, disturbances resembling hurricanes have not been detected in Earth’s upper atmosphere. Here, we report a long-lasting space hurricane in the polar ionosphere and magnetosphere during low solar and otherwise low geomagnetic activity. This hurricane shows strong circular horizontal plasma flow with shears, a nearly zero-flow center, and a coincident cyclone-shaped aurora caused by strong electron precipitation associated with intense upward magnetic field-aligned currents. Near the center, precipitating electrons were substantially accelerated to ~10 keV. The hurricane imparted large energy and momentum deposition into the ionosphere despite otherwise extremely quiet conditions. The observations and simulations reveal that the space hurricane is generated by steady high-latitude lobe magnetic reconnection and current continuity during a several hour period of northward interplanetary magnetic field and very low solar wind density and speed. 
    more » « less
  2. Abstract Using the global Lagrangian version of the piecewise parabolic method‐magnetohydrodynamic (PPMLR‐MHD) model, we simulate two consecutive storms in December 2015, a moderate storm on 14–15 December and a strong storm on 19–22 December, and calculate the radial diffusion coefficients (DLL) from the simulated ultralow frequency waves. We find that even though the strong storm leads to more enhancedBzandEφpower than the moderate storm, the two storms share in common a lot of features on the azimuthal mode structure and power spectrum of ultralow frequency waves. For both storms, the totalBzandEφpower is better correlated with the solar wind dynamic pressure in the storm initial phase and more correlated withAEindex in the recovery phase.Bzwave power is shown to be mostly distributed in low mode numbers, whileEφpower spreads over a wider range of modes. Furthermore, theBzandEφpower spectral densities are found to be higher at higherLregions, with a strongerLdependence in theBzspectra. The estimatedDLLbased on MHD fields shows that inside the magnetopause, the contribution from electric fields is larger than or comparable to that from magnetic fields, and our event‐specific MHD‐basedDLLcan be smaller than some previous empiricalDLLestimations by more than an order of magnitude. At last, by validating against in situ observations from Magnetospheric Multiscale spacecraft, our MHD results are found to generally well reproduce the totalBzfields and wave power for both storms, while theEφpower is underestimated in the MHD simulations. 
    more » « less